Jonas V. Bilenas
March 12t 2018
PhilaSUG

WHAT ARE SAS MACROS:

WHAT ARE SAS MACROS:
3 SAS MACRO GURUS

CONCEPT of SAS MACROS
Art Carpenter

https://support.sas.com/en/books/authors/art-carpenter.html
https://www.sas.com/store/books/categories/usage-and-reference/carpenter-s-complete-guide-to-the-sas-macro-
language-third-edition/prodBK 67815 en.html

Check out YOUTUBE Art Carpenter SAS GURU

https://support.sas.com/en/books/authors/art-carpenter.html
https://www.sas.com/store/books/categories/usage-and-reference/carpenter-s-complete-guide-to-the-sas-macro-language-third-edition/prodBK_67815_en.html

CONCEPT of SAS MACROS
* From Art Carpenter’s Complete Guide to the SAS Macro
Language, 2" edition:

= “Macro language provides tools that allow you to:
= Pass information between SAS steps.

= Dynamically create code after the user submits the
program for execution.

= Conditionally execute DATA or PROC steps.

= Create generalizable and flexible code.”

CONCEPT of SAS MACROQOS
Ron Fehd

SECTION
CHAIR

ated

Macro Design Ideas: Theory, Template, Practice Ronald J. Fehd, Stakana Analytics, Atlanta, GA, USA
https://support.sas.com/resources/papers/proceedings14/1899-2014.pdf

https://support.sas.com/resources/papers/proceedings14/1899-2014.pdf

Introduction

Summary

This section review the context in which macros are written.

Who? :
What? :

Why? :

When? :

Where? :

Who writes macros? Either users or programmers write macros.

What is a macro? A macro is a program which can replicate state-
ments around values supplied in parameters.

Why write macros? These are some reasons to create macros.

1. reuse

2. encapsulate complexity

3. to use either of the macro statements $do or $if

4. to use either of the macro functions $sysevalf or $sysfunc

When are macros written, or polished? Macros are written after ad
hoc programming produces several examples of similar processing
that can be simplified into a macro. Polishing is best accomplished
before peer review.

Where are macros? Macros occur in these places:

e within a program

e inaprogram in a project
« in a site folder available to all projects

These ideas on macro design are for programmers writing or polishing
macros for use in either a project or site.

https://support.sas.com/resources/papers/proceedings14/1899-2014.pdf

CONCEPT of SAS MACROQOS
lan Whitlock

https://www.lexjansen.com/nesug/nesug04/hw/hw10.pdf Whitlock, I. & McMullen, Q. Macro Power, (2004)

https://www.lexjansen.com/nesug/nesug04/hw/hw10.pdf

CONCEPT of SAS MACROS

» From lan Whitlock RUG papers:

* “The beginner often mistakenly gets the impression that SAS macro is sort of a super SAS
programming language. It isn't. It is a language for manipulating text to make SAS programs.”

* “SAS has developed in a context where variable names are known and tied to specific data elements.
This makes it easy to quickly develop small programs that can accomplish a lot. However, the
programs are typically applicable to a very specific situation. When given a new dataset, the
LIBNAME must change and the member name must change and all the usage of variable names may
no longer be appropriate. In a word, SAS programs can be simple, but brittle. Many changes may be
needed when the situation changes only slightly.

» SAS programs may make good templates for particular problems, but they are not general solutions.
They usually require some macro elements to make them general solutions to class of related
problems. The main significance of the macro language is that it can return some of the flexibility to
the SAS language needed to make general programs. A macro may be thought of as a parameterized
unit of SAS code.”

My CONCEPT of SAS MACROS

(/, f\\A N

—y
—
/ -

—

2’ w 4
ﬁ \ ‘

w
w

Do

Aty

#

W e

10

CONCEPT of SAS MACROS

= You realize that the SAS code you are composing has certain steps or procedures that are similar
and are repeated a number of times in your code. It would be nice if you don’t have to copy and
paste the code over and over and just call in a MACRO that you created to run the same code
with provided user parameters that change how the code is processed.

= The MACRO code can take certain parameters (MACRO VARIABLES) which will modify the code
when it executes.

= Examples of MACRO VARIABLES:
* The data set you want the MACRO to process.
= Possible WHERE conditions.
= OPTIONS used in PROCS.

= MACRO VARIABLES and MACRO CODE can be useful in Production Code.
= Users don’t change the code per say but change the parameters that generate new code
and new output.
= Useful when code is approved by CONTROLS or REGULATORY groups.

CONCEPT of SAS MACROS

= We will review:
= MACRO VARIABLES
= %LET
= SYMPUT or SYMPUTX, that is the question.
= INTO in squeal code (SQL).
= MACRO CODE:
= %IF, %THEN. %ELSE
= LOOPING WITH %DO, %END
= SOME MACRO FUNCTIONS:
= %STR
= %SYSFUNC
= %UPCASE
= %SCAN after squeal

= \WHERE YOU CAN STORE MACROS
= AUTOCALL Directories
= COMPILED MACRO CATALOGS

= A few tricks to decode the LOG if there are ERRORS

12

A SIMPLE MACRO: Example 1

IMPORTING AN XLS FILE INTO A SAS DATA SET

Code to import an XLS file into SAS Data Set

RUN;

PROC IMPORT OUT = NPV

DATAFILE = 'baseline input.xls'
DBMS = XLS REPLACE;
GETNAMES=YES ;
DATAROW=2;
SHEET = "INPUTS";
MIXED=NO;

14

IMPORTING AN XLS FILE INTO A SAS DATA SET

* Butyou need to run the code a number of times.

* You have many tabs you want to read into SAS data sets

* Can you MACROSIZE the code? Will be nice to have
around. Use in current production code you are working
on and other times you code calls to import from an XLS
file.

IMPORTING AN XLS FILE
MACRO CO

INTO A SAS DATA SET
THE MACRO CODE:

$macro import (out,datafile,DBMS, sheet) ;
PROC IMPORT OUT= &out.
DATAFILE = "&datafile."
DBMS = &DBMS. REPLACE;
GETNAMES=YES ;
DATAROW=2;
%$if &DBMS. ne CSV %then %do;
SHEET="&sheet.";
%$end;
MIXED=NO;
RUN;
$mend;

OUT, DATAFILE, DBMS, SHEET are LOCAL MACRO VARIABLES.

Only available during the MACRO run.

16

IMPORTING AN XLS FILE INTO A SAS DATA SET

EXECUTING THE MACRO CODE:

%import (out=NPV,
datafile = baseline input.xls,
DBMS=XLS,
sheet=INPUTS) ;

17

IMPORTING AN XLS FILE INTO A SAS DATA SET

OR,
EXECUTING THE MACRO CODE:

%import (NPV,baseline.xls, XLS, INPUTS) ;

18

IMPORTING AN XLS FILE INTO A SAS DATA SET

Anything wrong with this code?

%$import (NPV,baseline.xls,XLS, INPUTS)

19

IMPORTING AN XLS FILE INTO A SAS DATA SET

Wait. What if user enters lower case values for macro
variable DBMS?

$macro import (out,datafile,DBMS, sheet) ;
PROC IMPORT OUT= &out.
DATAFILE = "&datafile."
DBMS = &DBMS. REPLACE;
GETNAMES=YES;
DATAROW=2 ;
$1f &DBMS. ne CSV %$then %do;
SHEET="&sheet.";
%$end;
MIXED=NO;
RUN;
$mend;

20

IMPORTING AN XLS FILE INTO A SAS DATA SET

Wait. What if user enters lower case values for macro
variable DBMS?

smacro import (out,datafile,DBMS, sheet) ;
PROC IMPORT OUT= &out.
DATAFILE = "&datafile."
DBMS = &DBMS. REPLACE;
GETNAMES=YES ;
DATAROW=2 ;
%$1if SUPCASE (&DBMS.) ne CSV $then %do;
SHEET="&sheet.";
$end;
MIXED=NO;
RUN;
$mend;

21

IMPORTING AN XLS FILE INTO A SAS DATA SET

Some more user error checks:

$macro import (out,datafile,DBMS, sheet) ;
PROC IMPORT OUT= &out.
DATAFILE = "&datafile."
DBMS = &DBMS. REPLACE;
GETNAMES=YES;
DATAROW=2 ;
%$1if SUPCASE (&DBMS.) ne CSV %$then %do;
SHEET="&sheet.";
%$end;
%else if SUPCASE (&DBMS.) ne CVS %then %do;
SHEET="&sheet.";
%$end;
MIXED=NO;
RUN;
$mend;

MACRO VARIABLES

MACRO VARIABLES

 MACRO VARIABLES
 MACRO VARIABLES in SAS can be defined in a number of ways.
* Using the %let statement in open code.
* Using SQL INTO statement.
e Using CALL SYMPUT or CALL SYMPUTX in a DATA STEP, typically in a DATA
NULL step.
* Use ODS OUTPUT along with CALL SYMPUT to capture elements of SAS
PROCEDURE Output
MACRO variables can be used downstream after assignment in subsequent open
code if defined as GLOBAL.

Naming MACRO VARIABLES

= Name can be from 1 to 32 characters in length.

= Must begin with a letter or underscore (_).

= Any Combination of letters and numbers may follow.

= Text that is stored in a macro variable can be up to 64K in length.
= Reference macro variables with an ampersand (&) prefix.

= You can put a period after the macro names. This will avoid confusion when
concatenating text after the macro variable.

= Easiest way to define a macro variable is to use the %let statement:
%let stuff=bourbon;
= Display macro variables:

%put the macro variable stuff is &stuff.;

EXAMPLE 2: Using MACRO Variables in
Open Code.

MACROS in SAS. MACRO VARIABLE ASSIGNMENT

* MACRO VARIABLE ASSIGNMENT EXAMPLES: %LET

options nocenter mprint symbolgen fullstimer;

%let ds=adv_sas;
%let var=years;

data &ds.;
input &var @ @;
label years = 'Years of SAS Experience’;
datalines;

315.565773.53.5105.5167.55
216.53.52510313.5

124

run;

The 2 macro variables are global macro variables. They can be used
anywhere in the code; open code or macro code.

27

MACROS in SAS. MACRO VARIABLE ASSIGNMENT

WAIT. WAIT, WAIT, WHAT ABOUT ANOTHER MACOR VARIABLE?

options nocenter mprint symbolgen fullstimer;

%let ds=adv_sas;
%let var=years;
%let var_label = Years of SAS Experience;

data &ds.;
input &var @ @;
datalines;
315.565773.53.5105.5167 .55
216.53.52510313.5

124

run;

28

MACROS in SAS. MACRO VARIABLE ASSIGNMENT

* Continuation of code:

ods graphics on;
proc univariate data=&ds. ;
var &var.;
histogram &var. [vscale = percent
normal(color=red)
kernel(color=blue)
inset n mean median std q1 q3 min max
/header = 'Summary Statistics'
pos=ne
label years = "&var_label. ";
run;

29

MACROS in SAS. MACRO VARIABLE ASSIGNMENT

Distribution of years
20 4
summary Statistics
] 24
Mean S BBTS
hedian 425
i Std Deviation 5 480353
60 - RN Lower Quartile 25
!) Upper Quartile 7
'-.IH rinimum 0=
: | Maximurm 25
£ / i
5 .
o 40 ~ I:' /\
0 , AT
I i I'll '\\M‘.‘
VN
[\
N
, \
20 H \ M,
I'| ..I‘. N
e T = -
C' o~ w-ki“__‘___l__\i-'- \l e, _
T ! T T I !
-G & 12 18 24 30
“ears of SAS Experience
| Curves Mormal(Mu=5S £875 Sigma=5461) — — — Kernel(c=079) |

30

Example 3. Same output as in 2 but within a MACRO

MACROS in SAS. More Advanced MACRO CODE

%macro uni_hist(data_set,var,
var_label,
where,format,density,stats,pos);

ods graphics on;

proc univariate data=&data_set. ;

var &var.;
&where;
histogram &var. [vscale = percent
&density
inset &stats
/header = 'Summary Statistics'
pos=&pos
label &var. = "&var_label."
run;
%mend;

32

MACROS in SAS. More Advanced MACRO CODE

/* MACRO CALL */
%uni_hist(data_set=adv_sas,
var=years,
var_label=Years of SAS Experience,
where=%STR(where &var. >=2;),
density=normal kernel,
stats= n mean(5.1) std(8.4) min makx,
pos=NE,
var_label=Years of SAS Experience

);

NOTES:
* You may ned to add SPOOL or NOSPOOL OPTION to the OPTIONS statement. This maybe recommended in the LOG .

33

More Advanced MACRO CODE.

Distribution of years
20
sSummary Statistics
M 19
Mean 6.3
St Deviation 54735
s mMinimum 2
&0 / W Maximum 23
|Ir \l'
|II III'
| I'.
- | w
= i
i f !
5 40+ \
I:I_ I|
\
\
"
‘a‘ '\
,
™,
\ ™,
I‘-\.
T \
A —— —,
T e L, LN
S
T T T T T =
=) 10 15 20 25 30
“Years of SAS Experience
[Curves Mormal(Mu=6 3474 Sigma=54795) — — — Kernel(c=0.73) |

Excluding the where clause

/* MACRO CALL */
%uni_hist(data_set=adv_sas,

var=years,

where=,

density=normal kernel,

stats= n mean(5.1) std(8.4) min max,

pos=NE,

var_label=Years of SAS Experience

);

/* MACRO CALL */
%uni_hist(adv_sas,
years,
normal kernel,
n mean(5.1) std(8.4) min makx,
NE,
Years of SAS Experience

);

More TRIVIA QUESTIONS?

TRIVIA QUESTION &aq.

* How can you comment out a %LET statement? More than 1 answer.
a. *%let var_label = Years of SAS Experience;
b. %*let var_label = Years of SAS Experience;
c. /* %let var_label = Years of SAS Experience; */
d. %macro hold; %let var_label = Years of SAS Experience; %$mend;

TRIVIA QUESTION

* Small LEGO MACRO. Anything wrong with it?

%macro TL(KEY,FMT);
input(put(&KEY.,&FMT..),best32.)
%mend;

TRIVIA QUESTION

* Small LEGO MACRO. Anything wrong with it?

%macro TL(KEY,FMT);
input(put(&KEY.,&FMT..),best32.)
%mend;

USAGE in OPEN CODE or OTHER MACROS:

SCORE=5 +
10 * %TL(RUN_DATE,UNEMPLOTMENT_RATE) +
12 * %TL(SEG,AVG_LOSS_ASSUMPTION);

39

CALL SYMPUTX
or
CALL SYMPUT

USING CALL SYMPUTX within a DATA STEP

CALL SYMPUTX is a useful way to assign values to macro variables within a data
step. Once assigned the macro variables can be used in the program.
Syntax:
 call symputx(“macro-variable”, value);
* macro-variable can be with quotes naming the macro variable or a
character variable value if not quoted.
* Value can be character or numeric value or a data set variable.
Macro variables get assigned after the data set is run. Cannot use the macro
variable in the data step.
CALL SYMPUTX replaces CALL SYMPUT since CALL SYMPUTX eliminates leading and
lagging spaces in both the MACRO variable and the value.

41

USING CALL SYMPUTX within a DATA STEP

Thanks David B. Horvath, NOBS for Noobs. PHILASUG FALL 2015

options nocenter;

data _null_;
call symputx('nobs’,n);
set sashelp.cars nobs=n;
stop;

run;

%put nobs = &nobs;

%put nobs = &nobs;
nobs =428

This code only works with SAS
Data Sets.

42

Capturing SAS statistics into Macro Variables using ODS OUTPUT

Will Hold for a Rainy DAY.

43

Few MACRO Functions

A few MACRO Functions: Quoting

%STR:

%let task = %str(proc print data=_last_ noobs;
var _numeric_;
format _numeric_ best32.;
run;);

In open code or macro code, &task will run the whole PROC.

%BQUOTE is another way to include multi line or strings with open quotes.

45

A Few MACRO Functions: %SCAN

Problem: Capitalize all variable names in a data set.

TEST DATA:

data test;
AAA =5; bbb =6; CC=7; ddd = 8; xYz='BB’;
output;

run; /* How many observations in test? */

proc contents data=test noprint out=cnts; run;
/* Why are we creating an output data set from PROC CONTENTS? */

46

Why are we creating an output data set from PROC CONTENTS?

Output data from PROC CONTENTS provides a data set that has
information about the data and the wvariables. CNTS data has 5
observations and 40 wvariables.

Variables:
CHARSET COLLATE COMPRESS CRDATE DELOBS ENCRYPT ENGINE FLAGS FORMAT FORMATD
FORMATL GENMAX GENNEXT GENNUM IDXCOUNT IDXUSAGE INFORMAT
INFORMD INFORMIL JUST LABEL LENGTH LIBNAME MEMLABEL. MEMNAME MEMTYPE MODATE NAME
NOBS NODUPKEY NODUPREC NPOS POINTOBS PROTECT REUSE
SORTED SORTEDBY TYPE TYPEMEM VARNUM

Some of the Variable wvalues:

Obs NAME TYPE NOBS
1 AAA 1 1
2 CcCcC 1 1
3 bbb 1 1
4 ddd 1 1
5 xYz 2 1

TYPE : l=numeric 2=character

47

Back to our code:

proc sql noprint;
select name into: vars separated by ' '
from cnts
quit;
/* The above code generates a macro variable called

vars that has each variable name separated with a
space */

sput vars = &vars.;
LOG OUTPUT:
72 %put vars = &vars.;

vars = AAA CCC bbb ddd xYz
73

48

The %SCAN function:

%SCAN pulls out parts of a macro variable.

* The function has 3 arguments:
* First argument is the macro variable name.
 Second argument is the part number. 1=first part, 2=
second.
 The 3rd argument defines the delimiter that separates the
parts of the macro variable. This example has the
delimiter as a space. Could be a comma.

The MACRO:

$macro rename;
$let I = 1; /* Initialize &I. */

proc datasets lib=work nolist; /* DATASETS to modify the data*/

modify test;

$do %until ($scan(&vars,&I.,%str()) = S$str()),
%$let var=%$scan(&vars,&I., %str());

%let ren=%upcase (&var.) ; /* &REN=Upcase of &var */
%if &var. ne &ren %then %do; /* if &VAR not equal to &REN*/
rename &var. = &ren.; /* Use RENAME STATEMENT in PROC DATASETS */
%$end; /* END THE 2~d LOOP */
%$let I = %eval(&I. + 1); /* Increment &I by 1 */
%end; /* End First Loop */
run;quit;

proc contents data=test;

run;
$mend ; /* END MACRO */
$rename /* CALL MACRO */

Thanks, Michael A. Ratithel PROC DATASETS; The Swiss Army Knife of SAS®
Procedures
Michael A. Raithel, Westat, Rockville, MD and SAS Press Author

Contents Result:

Alphabetic List of Variables and Attributes

Variable Type Len

1 AAA Num 8
2 BBB Num 8
3 CCC Num 8
4 DDD Num 8
5 XYz Char 2

51

%EVAL or %SYSEVALF?

A Few MACRO Functions: %EVAL

Performs integer arithmetic on macro number variables. Results are integer even
if the arithmetic result is not an integer.

options nocenter;

1

2

3 %let x=5;

4 %let y=&x.+1;

5 %let z=%eval(&x.+1);
6 %let a=%eval(&x/&y);
7

8

5

%put &x &y &z &a;
5+162

IF | had
%let a=%eval(&x/&z)
| will get O printed out.

%let a=%sysevalf(&x/&z); /* SOLUTION is SYSEVALF */
will print out
0.83333333333333

53

SYSTEM MACRO VARIABLES

SYSTEM MACRO VARIABLES:

%put all ; /* will list all macro
variables in the log: AUTOMATIC,
GLOBAL, LOCAL */

SYSTEM MACRO VARIABLES

%put _all_;

AUTOMATIC AFDSID 0
AUTOMATIC AFDSNAME
AUTOMATIC AFLIB

AUTOMATIC AFSTR1

AUTOMATIC AFSTR2

AUTOMATIC FSPBDV
AUTOMATIC SYSBUFFR
AUTOMATIC SYSCC 0
AUTOMATIC SYSCHARWIDTH 1
AUTOMATIC SYSCMD
AUTOMATIC SYSDATE 04JUN15
AUTOMATIC SYSDATE9 04JUN2015
AUTOMATIC SYSDAY Thursday
AUTOMATIC SYSDEVIC
AUTOMATIC SYSDMG 0
AUTOMATIC SYSDSN _NULL_
AUTOMATIC SYSENCODING latinl
AUTOMATIC SYSENDIAN BIG
AUTOMATIC SYSENV BACK
AUTOMATIC SYSERR 0
AUTOMATIC SYSERRORTEXT
AUTOMATIC SYSFILRCO
AUTOMATIC SYSHOSTNAME tide4101
AUTOMATIC SYSINDEX 0
AUTOMATIC SYSINFO 0
AUTOMATIC SYSJOBID 636026
AUTOMATIC SYSLAST _NULL_
AUTOMATIC SYSLCKRC 0
AUTOMATIC SYSLIBRC 0

AUTOMATIC SYSLOGAPPLNAME
AUTOMATIC SYSLIBRC 0
AUTOMATIC SYSLOGAPPLNAME
AUTOMATIC SYSMACRONAME
AUTOMATIC SYSMAXLONG
9007199254740992

AUTOMATIC SYSMENV S
AUTOMATIC SYSMSG

AUTOMATIC SYSNCPU 4
AUTOMATIC SYSODSPATH
AUTOMATIC SYSPARM
AUTOMATIC SYSPBUFF
AUTOMATIC SYSPROCESSID
41DA1024947B2BE04018000000000000
AUTOMATIC SYSPROCESSNAME Program
test.sas

AUTOMATIC SYSPROCNAME
AUTOMATIC SYSRC 0

AUTOMATIC SYSSCP AIX 64
AUTOMATIC SYSSCPL AIX
AUTOMATIC SYSSITE 0051211011
AUTOMATIC SYSSIZEOFLONG 8
AUTOMATIC SYSSIZEOFUNICODE 4
AUTOMATIC SYSSTARTID
AUTOMATIC SYSSTARTNAME
AUTOMATIC SYSTCPIPHOSTNAME
tide4101.unix.barclays.co.uk
AUTOMATIC SYSTIME 18:37
AUTOMATIC SYSUSERID sylpjb6
AUTOMATIC SYSVER 9.2

AUTOMATIC SYSVLONG
9.02.02M3P041310
AUTOMATIC SYSVLONG4
9.02.02M3P04132010
AUTOMATIC SYSWARNINGTEXT

Get FUNKY with %SYSFUNC

Exam

nle of using SYSTEM MACRO VARIABLES

e Adding System Date and Time to title of an ODS output file:

ods EXCEL file = "MODEL_3YR.&sysdate..%sysfunc(compress(&systime,':')).xlsx"
style=SASWEB;

* Double quotes required for macro variable resolution.
* &: Indicates a macro variable.

* .: Indicates the end of the macro variable. Sometimes you need this sometimes you
don’t.

* %: Indicates a macro call, macro statement, or a macro function. This case itis a
SYSFUNC function used to apply some data step functions to macro variables.

« Example output: MODEL_3YR.04JUN15.1837.xIsx
 WILL WORK IN open code.

Moriak, C. “%SYSFUNC: A Macro Variable Can't Function Without It” NESUG 15

58

Example of using SYSTEM MACRO VARIABLES

e NOTE: When running interactively, eg. SAS/EG certain rules may
apply:
e &SYSTIME will not change, unlike batch submit, until you exit SAS/EG.
e You will need to specify the full path of the location of the ODS output.

e See next page to see an example run in SAS/EG

59

DUMPING ODS OUTPUT TO your WORK LOCATION

* Running SAS/EG on a GRID you can also see what is your work
location.

* Global variable &SASWORKLOCATION.
« Why dump to work location?

* Your output will be available for FTP from the work location
to your LAN location after program runs if using SAS/EG.

* Not so for batch submit code.

 |f you exit SAS/EG correctly, all work space files will be
deleted including the XLSX file.

* No need for manual clean up of files.

60

DUMPING ODS OUTPUT TO your WORK LOCATION

%let outp=%sysfunc(compress(&SASWORKLOCATION.,'""));

ods EXCEL file="&outp.TEST.&sysdate..%sysfunc(compress(&systime,':"')).xlIsx“
style=SASWEB;
ods EXCEL options(sheet_name="WINTER2018");

proc print data=sashelp.class;
run;

ods EXCEL close;

61

DUMPING ODS OUTPUT TO your WORK LOCATION

TEST.18JAN18.1901 xlsx [Protected View] - Microsoft Excel = = 53
Page Layout Formulas Data Review View Developer o@ = =
o Protected View This file originated from an Internet location and might be unsafe. Click for more details. x
AL -(= £ | Obs ~
FI B cC| D E F G [H [[J [K [L | M | N | [| P | Q | R | 5 | T | [[F = |
1 e Age Heig eig =
2 Alfred M 14 690 1425
3 Aice F 13 565 840
4 Barbara F 13 653 980
5 Jcaol F 14 628 1025
6 Henry M 14 635 1025
7 Jlames M 12 573 830
8 Jane F 12 598 845
9 Jdanet F 15 625 1125
10 B Jefrey M 13 625 840
11 1 01] John M 12 500 995
12 Joyee F 1 513 505
13 Judy F 14 B3 900
14 Louise F 12 863 770
15 Sl Mary F 15 B85 1120
16 Philp M 16 720 1500
17 B [{Robert M 12 848 1280
18 Ronald M 15 670 1330
19 |\l Thomas M 1 &75 850
20 JEE] William M 15 665 1120
22
.
M 4% V| WINTER2018 150 i | o |

5 PRI

17:25
18/01/2018

62

Looping in a MACRO CODE

Fruit Loops

1 options nocenter ;

2 smacro loopy run;

3 %do dog = %to 4;
4 $put dog = &dog;
5 %end;

6 $mend;

7

8 $loopy run;

dog 1

dog = 2

dog = 3

dog 4

Fruity Loops

1 options nocenter ;
2 gmacro loopy run;
3 %do dog =1,2,3,4;

ERROR: Expected %TO not. found in %DO statement. A dummy macro
will be compiled.
sput dog = &dog;
%end;
smend ;

0O JdJ o On v

%loopy run;

180
WARNING: Apparent invocation of macro LOOPY RUN not resolved.

More Loops?

1 options nocenter ;

2 $macro loopy run;

3 %do dog = Poodle %to Lab;
4 $put dog = &dog;

5 $end;

6 $mend ;

7

8

%loopy run;

ERROR: A character operand was found in the %EVAL function or %IF

condition where a numeric operand is required. The condition was:
Poodle

ERROR: The 3%FROM value of the %DO DOG loop is invalid.

ERROR: A character operand was found in the 3%EVAL function or S3IF

condition where a numeric operand is required. The condition was:

Lab

ERROR: The 3TO value of the %DO DOG loop is invalid.
ERROR: The macro LOOPY RUN will stop executing.

66

More Loops

options nocenter mprint symbolgen fullstimer;
proc format;

value doggy 1 = 'Poodle'
2 = 'Basset Hound'
3 = 'Lab'

.
14

run;,

gmacro loopy_ run;
%do dog = 1 %$to 3;
%$let breed = %sysfunc (putn(&dog.,doggy.)) ;
$put dog = &dog | breed = &breed.;
%end;
$mend;

%loopy run;

LOG:

dog =1 | breed = Poodle

dog | breed Basset Hound
dog = 3 | breed = Lab

I
N

67

Storing Macros in Folders to Call
From Other Source Codes

AUTOCALL Facility

You can save macros in a directory for SAS to look for the macros when called.
options mautosource SASAUTOS=(macl mac2);
You can refer to more than 1 location:

filename macl “\stuff\models\macros\”;
filename mac2 “\stuff\macros”’;

This may not work in the SAS GRID. To work you will need to move
macro programs from the LAN to the GRID.

Compiling MACROS

You can save macros in a compiled catalog in a directory for SAS to look for the macros
when called. Example from NPV simulation code:

options nocenter mprint symbolgen compress=binary fullstimer
mstored sasmstore=macin source2;

libname macin ('.');
%macro PREPAYMENT/ store source des='"PREPAYMENT MODELS';

%mend PREPAYMENT;

Note that the source code is not recoverable from the macro catalog unless you
specify a SOURCE option.

libname macin ('.'); If you are running SAS interactively or SAS/EG or the GRID you
will need to provide the full path name.

ALSO NOTE: CATALOGS cannot be FTPed across different platforms

70

Compiled MACROS

You can store catalogs in multiple directories:

options nocenter mprint symbolgen compress=binary fullstimer mstored
sasmstore=macin source2;

libname macin ('../../MACROS', */MODELS’) access=readonly;

Note, if running interactively, you will need to provide the full path. Above
code is for UNIX directory commands running a batch SAS program.

Above libname concatenates 2 catalogs where the compiled macros reside.

71

Recovering code of compiling MACRQOS

%copy prepayment / lib= macin
out=‘c:\macros\prepayment.sas’ src;

Note that the source code is not recoverable from the macro catalog unless
you specify a SOURCE option when compiling.

72

Listing of MACRO Catalog

proc catalog catalog=macin.sasmacr;
contents /*stats*/;
run; quit;

Contents of Catalog MACIN.SASMACR

Name Type Create Date Modified Date Description

1 BLEND MACRO 11Apr16:18:55:11 11Apr16:18:55:11 Macro to blend some fields in MTG NPV
2 CAP_REPAY MACRO 11Jull6:15:38:46 11Jull6:15:38:47 CAP_REPAY

3 FIND MISSING MACRO 11Apr16:17:57:34 11Apr16:17:57:34 Finds missing value variables

4 FTP_CALC MACRO 192pr16:20:05:10 192pr16:20:05:10 FTP calc:FTP_LTP_ RATE

5 FTP_LIBOR MACRO 11Aprl16:18:24:46 11Apr16:18:24:46 FTP calc:FTP_Rates_DIV_LIBOR_ RATE

6 INPUT FILE MACRO 14Jull6:19:10:54 14Jull6:19:10:54 Captures INPUT FILE

7 K_CALC MACRO 14Apr16:19:55:20 14Apr16:19:55:20 calculates K

8 MNTH MACRO 01Junl6:14:07:14 01Junl6:14:07:14 Adds Month Header

9 OBS_VARS MACRO 01Junl6:13:16:13 01Junl6:13:16:13 Returns NOBS NVARS macro variables
10 PARMREAD MACRO 11Apr16:17:51:09 11Apr16:17:51:09 Pulls in PARMs from &INPUT_ FILE..xls
11 PRINT10Y MACRO 12Jull6:13:42:51 12Jull6:13:42:51 10 YR Macro Print P&L.V2
12 PRINT10_ODS MACRO 22Aprl16:18:39:18 22Apr16:18:39:18 10 YR ODS Print P&L.V2
13 SOURCE_CODE MACRO 12Apr16:16:41:18 12Apr16:16:41:18 Prints Full Source Code Name
14 YEARGP MACRO 11Apr16:18:12:13 11Apr16:18:12:13 IF ONLY 5 years if INPUTS provided

15 YEARLY OUT MACRO 12Aprl16:16:52:20 12Apr16:16:52:20 Outputs Yearly metrics

Deleting entries of a MACRO Catalog

proc catalog catalog=macin.sasmacr ET=MACRO;
delete PRINT10_ODS
/* You can add more than 1 entry *
run;
contents /*stats*/;
run; quit;

74

Odds and Ends

Debugging SAS MACROS

Pain to debug MACROS.

The macro is often treated in the log as a single line of code. You get errors, for example,
pointing to line 156, column 456. Line 156 is the start of the macro with errors but it is
hard to determine column 456.

MFILE option is the solution.

76

MFILE: Output resulting source code to a file for debugging

options MPRINT MFILE;
filename mprint ‘c:/sasmacros/sascode.sas’

To turn off option:

options MPRINT NOMFILE;
*filename mprint ‘c:/sasmacros/sascode.sas’

MFILE generates code that can replace the macro to test in a second run with an
%include MPRINT as opposed to calling the MACRO.

Once you generate the log with that code as opposed to the macro call, errors will be
better trcked.

Other options are available for debugging. SEE:

SAS® System Options: The True Heroes of Macro Debugging Kevin Russell and Russ
Tyndall, SAS Global Forum 2010

https://support.sas.com/resources/papers/proceedings10/147-2010.pdf

77

MACRO code Syntax: Using macro to comment out code.
Just don’t call the macro.

%macro hold;

proc print data=/*sashelp.*/class;
run;

%mend;

78

MACRO code with Big Data:

MACRO logic was introduced years ago when storage was more expensive and
more of an issue. If MACROS are not used properly, they can slow down

processing.
Log files can be large. Once a macro is tested and compiled, make sure these

options are coded: NOMLOGIC, NOMPRINT, NOMRECALL, NOSYMBOLGEN. See:

Big Data, Fast Processing Speeds Kevin McGowan SAS® Solutions ...
support.sas.com/resources/papers/proceedings13/036-2013.pdf

79

https://www.google.com/url?q=http://support.sas.com/resources/papers/proceedings13/036-2013.pdf&sa=U&ved=0ahUKEwi3ueLFg4XOAhWoDZoKHSbQB3cQFggEMAA&client=internal-uds-cse&usg=AFQjCNGoT5V5_7vWEHY93gnqSigaEoFAuw

Questions?
Comments?

Concerns?

